BEGIN:VCALENDAR
VERSION:2.0
PRODID:-//PR Statistics - ECPv6.0.1//NONSGML v1.0//EN
CALSCALE:GREGORIAN
METHOD:PUBLISH
X-WR-CALNAME:PR Statistics
X-ORIGINAL-URL:https://www.prstatistics.com
X-WR-CALDESC:Events for PR Statistics
REFRESH-INTERVAL;VALUE=DURATION:PT1H
X-Robots-Tag:noindex
X-PUBLISHED-TTL:PT1H
BEGIN:VTIMEZONE
TZID:Europe/London
BEGIN:DAYLIGHT
TZOFFSETFROM:+0000
TZOFFSETTO:+0100
TZNAME:BST
DTSTART:20220327T010000
END:DAYLIGHT
BEGIN:STANDARD
TZOFFSETFROM:+0100
TZOFFSETTO:+0000
TZNAME:GMT
DTSTART:20221030T010000
END:STANDARD
END:VTIMEZONE
BEGIN:VEVENT
DTSTART;VALUE=DATE:20221102
DTEND;VALUE=DATE:20221104
DTSTAMP:20221001T035625
CREATED:20201111T180821Z
LAST-MODIFIED:20220804T134914Z
UID:10000330-1667347200-1667519999@www.prstatistics.com
SUMMARY:ONLINE COURSE - Nonlinear Regression using Generalized Additive Models (GAMR02)
DESCRIPTION:Delivered remotely (USA east)\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n Event Date \nWednesday\, November 2nd\, 2022\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n Course Format\nThis is a ‘LIVE COURSE’ – the instructor will be delivering lectures and coaching attendees through the accompanying computer practical’s via video link\, a good internet connection is essential. \nCourse Program\nTIME ZONE – GMT+1 – however all sessions will be recorded and made available allowing attendees from different time zones to follow. \nPlease email oliverhooker@prstatistics.com for full details or to discuss how we can accommodate you). \n \n \n \n \n \n \n \n \n \n \n Course Details\n This course will cover introductory hierarchical modelling for real-world data sets from a Bayesian perspective. These methods lie at the forefront of statistics research and are a vital tool in the scientist’s toolbox. The course focuses on introducing concepts and demonstrating good practice in hierarchical models. All methods are demonstrated with data sets which participants can run themselves. Participants will be taught how to fit hierarchical models using the Bayesian modelling software Jags and Stan through the R software interface. The course covers the full gamut from simple regression models through to full generalised multivariate hierarchical structures. A Bayesian approach is taken throughout\, meaning that participants can include all available information in their models and estimates all unknown quantities with uncertainty. Participants are encouraged to bring their own data sets for discussion with the course tutors. \nThis is a ‘LIVE COURSE’ – the instructor will be delivering lectures and coaching attendees through the accompanying computer practical’s via video link\, a good internet connection is essential. \nTIME ZONE – GMT – however all sessions will be recorded and made available allowing attendees from different time zones to follow a day behind with an additional 1/2 days support after the official course finish date (please email oliverhooker@prstatistics.com for full details or to discuss how we can accommodate you).\n \n \n \n \n \n Intended Audiences\n This course is aimed at anyone who is interested in using R for data science or statistics. R is widely used in all areas of academic scientific research\, and also widely throughout the public\, and private sector.\n \n \n \n \n \n Venue\n Delivered remotely \n \n \n \n \n \n Course Information\n Venue – Delivered remotely \nTime zone – GMT+1 \nAvailability – TBC \nDuration – 2 days \nContact hours – Approx. 15 hours \nECT’s – Equal to 1 ECT’s \nLanguage – English \n \n \n \n \n \n Teaching Format\n This course will be largely practical\, hands-on\, and workshop based. For each topic\, there will first be some lecture style presentation\, i.e.\, using slides or blackboard\, to introduce and explain key concepts and theories. Then\, we will cover how to perform the various statistical analyses using R. Any code that the instructor produces during these sessions will be uploaded to a publicly available GitHub site after each session. For the breaks between sessions\, and between days\, optional exercises will be provided. Solutions to these exercises and brief discussions of them will take place after each break. \nThe course will take place online using Zoom. On each day\, the live video broadcasts will occur between (British Summer Time\, UTC+1\, timezone) at:• 12pm-2pm• 3pm-5pm• 6pm-8pm \nAll sessions will be video recorded and made available to all attendees as soon as possible\, hopefully soon after each 2hr session. \nAttendees in different time zones will be able to join in to some of these live broadcasts\, even if all of them are not convenient times. By joining any live sessions that are possible\, this will allow attendees to benefit from asking questions and having discussions\, rather than just watching prerecorded sessions. \nAt the start of the first day\, we will ensure that everyone is comfortable with how Zoom works\, and we’ll discuss the procedure for asking questions and raising comments. \nAlthough not strictly required\, using a large monitor or preferably even a second monitor will make the learning experience better\, as you will be able to see my RStudio and your own RStudio simultaneously. \nAll the sessions will be video recorded\, and made available immediately on a private video hosting website. Any materials\, such as slides\, data sets\, etc.\, will be shared via GitHub. \n \n \n \n \n \n Assumed quantitative knowledge\n We assume familiarity with linear regression analysis\, and the major concepts of classical inferential statistics (p-values\, hypothesis testing\, confidence intervals\, model comparison\, etc). Some familiarity with common generalized linear models such as logistic or Poisson regression will also be assumed. \n \n \n \n \n \n Assumed computer background\n R experience is desirable but not essential. Although we will be using R extensively\, all the code that we use will be made available\, and so attendees will just to add minor modifications to this code. Attendees should install R and RStudio on their own computers before the workshops\, and have some minimal familiarity with the R environment. \n \n \n \n \n \n Equipment and software requirements\n \nA laptop computer with a working version of R or RStudio is required. R and RStudio are both available as free and open source software for PCs\, Macs\, and Linux computers. \n\n\n\n\n\nParticipants should be able to install additional software on their own computer during the course (please make sure you have administration rights to your computer). \n\n\n\n\n\n\nA large monitor and a second screen\, although not absolutely necessary\, could improve the learning experience. Participants are also encouraged to keep their webcam active to increase the interaction with the instructor and other students. \n\n\n\n\n\nDownload R \n\n\nDownload RStudio \n\n\nDownload Zoom \n\n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n PLEASE READ – CANCELLATION POLICY \nCancellations are accepted up to 28 days before the course start date subject to a 25% cancellation fee. Cancellations later than this may be considered\, contact oliverhooker@prstatistics.com. Failure to attend will result in the full cost of the course being charged. In the unfortunate event that a course is cancelled due to unforeseen circumstances a full refund of the course fees will be credited. \n \n \n \n \n \n If you are unsure about course suitability\, please get in touch by email to find out more oliverhooker@prstatistics.com \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n \n COURSE PROGRAMME\n\nWednesday 2nd – Classes from 12:00 to 20:00 \nTopic 1: Regression modelling overview. We begin with a brief overview and summary of regression modelling in general. The purpose of this is to provide a brief recap of general and generalized linear models\, and to show how nonlinear regression fits into this very widely practiced framework. \nTopic 2: Polynomial regression. Polynomial regression is both a conceptually and practically simple extension of linear modelling and so provides a straightforward and simple means to perform nonlinear regression. Polynomial regression also leads naturally to the concept of basis function function regression and thus is bridge between the general or generalized linear models and nonlinear regression modelling using generalized additive models. \nTopic 3: Spline and basis function regression: Nonlinear regression using splines is a powerful and flexible non-parametric or semi-parametric nonlinear regression method. It is also an example of a basis function regression method. Here\, we will cover spline regression using the splines::bs and splines::ns functions that can be used with lm\, glm\, etc. We also look at regression using radial basis functions\, which is closely related to spline regression. Understanding basis functions is vital for understanding Generalized Additive Models. \nThursday 3rd – Classes from 12:00 to 20:00 \nTopic 4: Generalized additive models. We now turn to the major topic of generalized additive models (GAMs). GAMs generalize many of concepts and topics covered so far and represent a powerful and flexible framework for nonlinear modelling. In R\, the mgcv package provides a extensive set of tools for working with GAMs. Here\, we will provide an in-depth coverage of mgcv including choosing smooth terms\, controlling overfitting and complexity\, prediction\, model evaluation\, and so on. \nTopic 5: Interaction nonlinear regression: A powerful feature of GAMs is the ability to model nonlinear interactions\, whether between two continuous variables\, or between one continuous and one categorical variable. Amongst other things\, interactions between continuous variables allow us to do spatial and spatio-temporal modelling. Interactions between categorical and continuous variables allow us to model how nonlinear relationships between a predictor and outcome change as a function of the value of different categorical variables. \nTopic 6: Generalized additive mixed models. GAMs can also be used in linear mixed effects\, aka multilevel\, models where they are known as generalized additive mixed models (GAMMs). GAMMs can also be used with the mgcv package. \n\n \n \n \n \n \n \n Course Instructor\n \n\n\n\nDr. Mark Andrews\n\nWorks At\nSenior Lecturer\, Psychology Department\, Nottingham Trent University\, England \n\nTeaches\nFree 1 day intro to r and r studio (FIRR)\nIntroduction To Statistics Using R And Rstudio (IRRS03)\nIntroduction to generalised linear models using r and rstudio (IGLM)\nIntroduction to mixed models using r and rstudio (IMMR)\nNonlinear regression using generalized additive models (GAMR)\nIntroduction to hidden markov and state space models (HMSS)\nIntroduction to machine learning and deep learning using r (IMDL)\nModel selection and model simplification (MSMS)\nData visualization using gg plot 2 (r and rstudio) (DVGG)\nData wrangling using r and rstudio (DWRS)\nReproducible data science using rmarkdown\, git\, r packages\, docker\, make & drake\, and other tools (RDRP)\nIntroduction/fundamentals of bayesian data analysis statistics using R (FBDA)\nBayesian data analysis (BADA)\nBayesian approaches to regression and mixed effects models using r and brms (BARM)\nIntroduction to stan for bayesian data analysis (ISBD)\nIntroduction to unix (UNIX01)\nIntroduction to python (PYIN03)\nIntroduction to scientific\, numerical\, and data analysis programming in python (PYSC03)\nMachine learning and deep learning using python (PYML03)\nPython for data science\, machine learning\, and scientific computing (PDMS02)\n\n \nPersonal website\n\nResearchGate \nGoogle Scholar\n\nMark Andrews is a Senior Lecturer in the Psychology Department at Nottingham Trent University in Nottingham\, England. Mark is a graduate of the National University of Ireland and obtained an MA and PhD from Cornell University in New York. Mark’s research focuses on developing and testing Bayesian models of human cognition\, with particular focus on human language processing and human memory. Mark’s research also focuses on general Bayesian data analysis\, particularly as applied to data from the social and behavioural sciences. Since 2015\, he and his colleague Professor Thom Baguley have been funded by the UK’s ESRC funding body to provide intensive workshops on Bayesian data analysis for researchers in the social sciences.
URL:https://www.prstatistics.com/course/nonlinear-regression-using-generalized-additive-models-gamr02/
LOCATION:Delivered remotely (USA east)\, Eastern Daylight Time\, MD\, United States
CATEGORIES:All Live Courses,Home Courses,Live Online Courses
ATTACH;FMTTYPE=image/jpeg:https://www.prstatistics.com/wp-content/uploads/2020/10/PS-SERIES-1.jpg
GEO:56.4906712;-4.2026458
END:VEVENT
END:VCALENDAR