Bayesian Data Analysis (BADA01R)
5th May 2025 @ 12:00 am  1st September 2028 @ 12:00 am
£350.00Course Format
Pre Recorded
About This Course
Bayesian methods are now increasingly widely in data analysis across most scientific research fields. Given that Bayesian methods differ conceptually and theoretically from their classical statistical counterparts that are traditionally taught in statistics courses, many researchers do not have opportunities to learn the fundamentals of Bayesian methods, which makes using Bayesian data analysis in practice more challenging. The aim of this course is to provide a solid introduction to Bayesian methods, both theoretically and practically. We will begin by teaching the fundamental concepts of Bayesian inference and Bayesian modelling, including how Bayesian methods differ from their classical statistics counterparts, and show how to do Bayesian data analysis in practice in R. We then provide a solid introduction to Bayesian approaches to these topics using R and the brms package. We begin by covering Bayesian approaches to linear regression. We will then proceed to Bayesian approaches to generalized linear models, including binary logistic regression, ordinal logistic regression, Poisson regression, zeroinflated models, etc. Finally, we will cover Bayesian approaches to multilevel and mixed effects models. Throughout this course, we will be using, via the brms package, Stan based Markov Chain Monte Carlo (MCMC) methods.
Intended Audiences
This course is aimed at anyone who is interested to learn and apply Bayesian data analysis in any area of science, including the social sciences, life sciences, physical sciences. No prior experience or familiarity with Bayesian statistics is required.
Course Details
Last UpDated – 14:01:2022
Duration – Approx. 20 hours
ECT’s – Equal to 3 ECT’s
Language – English
Teaching Format
There will be morning lectures based on the modules outlined in the course timetable. In the afternoon there will be practicals based on the topics covered that morning. Data sets for computer practicals will be provided by the instructors, but participants are welcome to bring their own data.
Assumed quantitative knowledge
A basic understanding of statistical concepts. Specifically, generalised linear regression models, statistical significance, hypothesis testing.
Assumed computer background
Familiarity with R. Ability to import/export data, manipulate data frames, fit basic statistical models & generate simple exploratory and diagnostic plots.
Equipment and software requirements
A laptop computer with a working version of R or RStudio is required. R and RStudio are both available as free and open source software for PCs, Macs, and Linux computers. R may be downloaded by following the links here https://www.rproject.org/. RStudio may be downloaded by following the links here: https://www.rstudio.com/.
All the R packages that we will use in this course will be possible to download and install during the workshop itself as and when they are needed, and a full list of required packages will be made available to all attendees prior to the course.
A working webcam is desirable for enhanced interactivity during the live sessions, we encourage attendees to keep their cameras on during live zoom sessions.
Although not strictly required, using a large monitor or preferably even a second monitor will improve he learning experience
PLEASE READ – CANCELLATION POLICY
Cancellations/refunds are accepted as long as the course materials have not been accessed,.
There is a 20% cancellation fee to cover administration and possible bank fess.
If you need to discuss cancelling please contact oliverhooker@prstatistics.com.
If you are unsure about course suitability, please get in touch by email to find out more oliverhooker@prstatistics.com
COURSE PROGRAMME
Day 1
Approx. 4 Hours
• Topic 1: We will begin with a overview of what Bayesian data analysis is in essence and how it fits into statistics as it practiced generally. Our main point here will be that Bayesian data analysis is effectively an alternative school of statistics to the traditional approach, which is referred to variously as the classical, or sampling theory based, or frequentist based approach, rather than being a specialized or advanced statistics topic. However, there is no real necessity to see these two general approaches as being mutually exclusive and in direct competition, and a pragmatic blend of both approaches is entirely possible.
• Topic 2: Introducing Bayes’ rule. Bayes’ rule can be described as a means to calculate the probability of causes from some known effects. As such, it can be used as a means for performing statistical inference. In this section of the course, we will work through some simple and intuitive calculations using Bayes’ rule. Ultimately, all of Bayesian data analysis is based on an application of these methods to more complex statistical models, and so understanding these simple cases of the application of Bayes’ rule can help provide a foundation for the more complex cases.
• Topic 3: Bayesian inference in a simple statistical model. In this section, we will work through a classic statistical inference problem, namely inferring the number of red marbles in an urn of red and black marbles, or equivalent problems. This problem is easy to analyse completely with just the use of R, but yet allows us to delve into all the key concepts of all Bayesian statistics including the likelihood function, prior distributions, posterior distributions, maximum a posteriori estimation, high posterior density intervals, posterior predictive intervals, marginal likelihoods, Bayes factors, model evaluation of outofsample generalization.
Day 2
Approx. 4 Hours
• Topic 4: Bayesian analysis of normal models. Statistical models based on linear and normal distribution are a mainstay of statistical analyses in general. They encompass models such as linear regression, Pearson’s correlation, ttests, ANOVA, ANCOVA, and so on. In this section, we will describe how to do Bayesian analysis of normal linear models, focusing on simple examples. One of the aims of this section is to identify some important and interesting parallels between Bayesian and classical or frequentist analyses. This shows how Bayesian and classical analyses can be seen as ultimately providing two different perspectives on the same problem.
• Topic 5: The previous section provides a socalled analytical approach to linear and normal models. This is where we can calculate desired quantities and distributions by way of simple formulae. However, analytical approaches to Bayesian analyses are only possible in a relatively restricted set of cases. On the other hand, numerical methods, specifically Markov Chain Monte Carlo (MCMC) methods can be applied to virtually any Bayesian model. In this section, we will reperform the analysis presented in the previous section but using MCMC methods. For this, we will use the brms package in R that provides an exceptionally easy to use interface to Stan.
Day 3
Approx. 4 Hours
• Topic 6: Bayesian linear models. We begin by covering Bayesian linear regression. For this, we will use the brm command from the brms package, and we will compare and contrast the results with the standard lm command. By comparing and contrasting brm with lm we will see all the major similarities and differences between the Bayesian and classical approach to linear regression. We will, for example, see how Bayesian inference and model comparison works in practice and how it differs conceptually and practically from inference and model comparison in classical regression. As part of this coverage of linear models, we will also use categorical predictor variables and explore varying intercept and varying slope linear models.
Day 4
Approx. 4 Hours
• Topic 7: Extending Bayesian linear models. Classical normal linear models are based on strong assumptions that do not always hold in practice. For example, they assume a normal distribution of the residuals, and assume homogeneity of variance of this distribution across all values of the predictors. In Bayesian models, these assumptions are easily relaxed. For example, we will see how we can easily replace the normal distribution of the residuals with a tdistribution, which will allow for a regression model that is robust to outliers. Likewise, we can model the variance of the residuals as being dependent on values of predictor variables.
• Topic 8: Bayesian generalized linear models. Generalized linear models include models such as logistic regression, including multinomial and ordinal logistic regression, Poisson regression, negative binomial regression, zeroinflated models, and other models. Again, for these analyses we will use the brms package and explore this wide range of models using real world datasets. In our coverage of this topic, we will see how powerful Bayesian methods are, allowing us to easily extend our models in different ways in order to handle a variety of problems and to use assumptions that are most appropriate for the data being modelled.
Day 5
Approx. 4 Hours
• Topic 9: Multilevel and mixed models. In this section, we will cover the multilevel and mixed effects variants of the regression models, i.e. linear, logistic, Poisson etc, that we have covered so far. In general, multilevel and mixed effects models arise whenever data are correlated due to membership of a group (or group of groups, and so on). For this, we use a wide range of realworld datasets and problems, and move between linear, logistic, etc., models are we explore these analyses. We will pay particular attention to considering when and how to use varying slope and varying intercept models, and how to choose between maximal and minimal models. We will also see how Bayesian approaches to multilevel and mixed effects models can overcome some of the technical problems (e.g. lack of model convergence) that beset classical approaches.
Course Instructor

 Dr. Mark Andrews
Works At
Senior Lecturer, Psychology Department, Nottingham Trent University, England Teaches
 Free 1 day intro to r and r studio (FIRR)
 Introduction To Statistics Using R And Rstudio (IRRS03)
 Introduction to generalised linear models using r and rstudio (IGLM)
 Introduction to mixed models using r and rstudio (IMMR)
 Nonlinear regression using generalized additive models (GAMR)
 Introduction to hidden markov and state space models (HMSS)
 Introduction to machine learning and deep learning using r (IMDL)
 Model selection and model simplification (MSMS)
 Data visualization using gg plot 2 (r and rstudio) (DVGG)
 Data wrangling using r and rstudio (DWRS)
 Reproducible data science using rmarkdown, git, r packages, docker, make & drake, and other tools (RDRP)
 Introduction/fundamentals of bayesian data analysis statistics using R (FBDA)
 Bayesian data analysis (BADA)
 Bayesian approaches to regression and mixed effects models using r and brms (BARM)
 Introduction to stan for bayesian data analysis (ISBD)
 Introduction to unix (UNIX01)
 Introduction to python (PYIN03)
 Introduction to scientific, numerical, and data analysis programming in python (PYSC03)
 Machine learning and deep learning using python (PYML03)
 Python for data science, machine learning, and scientific computing (PDMS02)
Personal website
Google Scholar
Mark Andrews is a Senior Lecturer in the Psychology Department at Nottingham Trent University in Nottingham, England. Mark is a graduate of the National University of Ireland and obtained an MA and PhD from Cornell University in New York. Mark’s research focuses on developing and testing Bayesian models of human cognition, with particular focus on human language processing and human memory. Mark’s research also focuses on general Bayesian data analysis, particularly as applied to data from the social and behavioural sciences. Since 2015, he and his colleague Professor Thom Baguley have been funded by the UK’s ESRC funding body to provide intensive workshops on Bayesian data analysis for researchers in the social sciences.