 # Bayesian Approaches To Regression And Mixed Effects Models Using R And brms (BARM01R)

## 1st January 2030

£220.00 Bayesian Approaches To Regression And Mixed Effects Models Using R And brms (BARM01R)

## Course Format

Pre Recorded

Bayesian methods are now increasingly widely used for data analysis based on linear and generalized linear models,and multilevel and mixed effects models. The aim of this course is to provide a solid introduction to Bayesian approaches to these topics using R and the brms package. Ultimately, in this course, we aim to show how Bayesian methods provide a very powerful, flexible, and extensible approach to general statistical data analysis. We begin by covering Bayesian approaches to linear regression. We will compare and contrast, in both practical and theoretical terms, the Bayesian approach and classical approach to linear regression. This will allow us to easily identify the major similarities and major differences, both in terms of concepts and practice, between the Bayesian and classical approaches. We will then proceed to Bayesian approaches to generalized linear models, including binary logistic regression, ordinal logistic regression, Poisson regression, zero-inflated models, etc. In this coverage, we will see the very wide range of models to which Bayesian methods can be easily applied. Finally, we will cover Bayesian approaches to multilevel and mixed effects models. Here again, we will see how Bayesian methods allow us to easily extend traditionally used methods like linear and generalized linear mixed effects models. We will also see how Bayesian methods allow us to control model complexity and solve algorithmic problems (e.g. model convergence problems) that can plague classical approaches to multilevel and mixed effects models. Throughout this course, we will be using, via the brms package, Markov Chain Monte Carlo (MCMC) methods. However, full technical details of MCMC will will be described here, but will be provided in subsequent Bayesian data analysis courses.

##### Intended Audiences

This course is aimed at anyone who is in interested in using Bayesian approaches to regression, multilevel, and mixed effects models in any area of science, including the social sciences, life sciences, physical sciences. No prior experience or familiarity with Bayesian statistics is required.

##### Course Details

Last Up-Dated – 27:05:2021

Duration – 15 hours

ECT’s – Equal to 1 ECT’s

Language – English

##### Teaching Format

This course will be largely practical, hands-on, and workshop based. For each topic, there will first be some lecture style presentation, i.e., using slides or blackboard, to introduce and explain key concepts and theories. Then, we will cover how to perform the various statistical analyses using R. Any code that the instructor produces during these sessions will be uploaded to a publicly available GitHub site after each session. For the breaks between sessions, and between days, optional exercises will be provided. Solutions to these exercises and brief discussions of them will take place after each break.

Although not strictly required, using a large monitor or preferably even a second monitor will make the learning experience better, as you will be able to see my RStudio and your own RStudio simultaneously.

All the sessions will be video recorded, and made available immediately on a private video hosting website. Any materials, such as slides, data sets, etc., will be shared via GitHub.

##### Assumed quantitative knowledge

We assume familiarity with inferential statistics concepts like hypothesis testing and statistical significance, and some practical experience with linear regression, logistic regression, mixed effects models.

##### Assumed computer background

Some experience and familiarity with R is required. However, although we will be using R extensively, all the code that we use will be made available, and so attendees will usually just need to copy and paste and add minor modifications to this code.

##### Equipment and software requirements

A laptop computer with a working version of R or RStudio is required. R and RStudio are both available as free and open source software for PCs, Macs, and Linux computers. R may be downloaded by following the links here https://www.r-project.org/. RStudio may be downloaded by following the links here: https://www.rstudio.com/.

All the R packages that we will use in this course will be possible to download and install during the workshop itself as and when they are needed, and a full list of required packages will be made available to all attendees prior to the course.

A working webcam is desirable for enhanced interactivity during the live sessions, we encourage attendees to keep their cameras on during live zoom sessions.

Although not strictly required, using a large monitor or preferably even a second monitor will improve he learning experience

## Tickets

The numbers below include tickets for this event already in your cart. Clicking "Get Tickets" will allow you to edit any existing attendee information as well as change ticket quantities.
BARM01R PRE RECORDED
BARM01R PRE RECORDED
£ 220.00
Unlimited

Cancellations/refunds are accepted as long as the course materials have not been accessed,.

There is a 20% cancellation fee to cover administration and possible bank fess.

If you are unsure about course suitability, please get in touch by email to find out more oliverhooker@prstatistics.com

### COURSE PROGRAMME

Day 1 – approx. 6 hours

Topic 1: Bayesian linear models. We begin by covering Bayesian linear regression. For this, we will use the brm command from the brms package, and we will compare and contrast the results with the standard lm command. By comparing and contrasting brm with lm we will see all the major similarities and differences between the Bayesian and classical approach to linear regression. We will, for example, see how Bayesian inference and model comparison works in practice and how it differs conceptually and practically from inference and model comparison in classical regression. As part of this coverage of linear models, we will also use categorical predictor variables and explore varying intercept and varying slope linear models.

Topic 2: Extending Bayesian linear models. Classical normal linear models are based on strong assumptions that do not always hold in practice. For example, they assume a normal distribution of the residuals, and assume homogeneity of variance of this distribution across all values of the predictors. In Bayesian models, these assumptions are easily relaxed. For example, we will see how we can easily replace the normal distribution ofthe residuals with a t-distribution, which will allow for a regression model that is robust to outliers.  Likewise, we can model the variance of the residuals as being dependent on values of predictor variables.

Day 2 – approx. 6 hours

Topic 3: Bayesian generalized linear models. Generalized linear models include models such as logistic regression, including multinomial and ordinal logistic regression, Poisson regression, negative binomial
regression, zero-inflated models, and other models. Again, for these analyses we will use the brms package and explore this wide range of models using real world data-sets. In our coverage of this topic, we will see how powerful Bayesian methods are, allowing us to easily extend our models in different ways in order to handle a variety of problems and to use assumptions that are most appropriate for the data being modelled.

Topic 4: Multilevel and mixed models. In this section, we will cover the multilevel and mixed effects variants of the regression models, i.e. linear, logistic, Poisson etc, that we have covered so far. In general, multilevel and mixed effects models arise whenever data are correlated due to membership of a group (or group of groups, and so on). For this, we use a wide range of real-world data-sets and problems, and move between linear, logistic, etc., models are we explore these analyses. We will pay particular attention to considering when and how to use varying slope and varying intercept models, and how to choose between maximal and minimal models. We will also see how Bayesian approaches to multilevel and mixed effects models can overcome some of the technical problems (e.g. lack of model convergence) that beset classical approaches.

## Course Instructor • Dr. Mark Andrews

Works At
Senior Lecturer, Psychology Department, Nottingham Trent University, England

• Teaches
• Free 1 day intro to r and r studio (FIRR)
• Introduction To Statistics Using R And Rstudio (IRRS03)
• Introduction to generalised linear models using r and rstudio (IGLM)
• Introduction to mixed models using r and rstudio (IMMR)
• Nonlinear regression using generalized additive models (GAMR)
• Introduction to hidden markov and state space models (HMSS)
• Introduction to machine learning and deep learning using r (IMDL)
• Model selection and model simplification (MSMS)
• Data visualization using gg plot 2 (r and rstudio) (DVGG)
• Data wrangling using r and rstudio (DWRS)
• Reproducible data science using rmarkdown, git, r packages, docker, make & drake, and other tools (RDRP)
• Introduction/fundamentals of bayesian data analysis statistics using R (FBDA)
• Bayesian approaches to regression and mixed effects models using r and brms (BARM)
• Introduction to stan for bayesian data analysis (ISBD)
• Introduction to unix (UNIX01)
• Introduction to python (PYIN03)
• Introduction to scientific, numerical, and data analysis programming in python (PYSC03)
• Machine learning and deep learning using python (PYML03)
• Python for data science, machine learning, and scientific computing (PDMS02)

Personal website

ResearchGate

Mark Andrews is a Senior Lecturer in the Psychology Department at Nottingham Trent University in Nottingham, England. Mark is a graduate of the National University of Ireland and obtained an MA and PhD from Cornell University in New York. Mark’s research focuses on developing and testing Bayesian models of human cognition, with particular focus on human language processing and human memory. Mark’s research also focuses on general Bayesian data analysis, particularly as applied to data from the social and behavioural sciences. Since 2015, he and his colleague Professor Thom Baguley have been funded by the UK’s ESRC funding body to provide intensive workshops on Bayesian data analysis for researchers in the social sciences.

Date:
1st January 2030
Cost:
£220.00
Event Category:
Event Tags:

## Organiser

Oliver Hooker (Course Organiser)

Recorded